Big Data Association Rules

- Overview 2
- Frequent Patterns 2
- Random Sampling 4
- SON Algorithm 5

- Overview

- Supermarket basket analysis: What products were often purchased together?
- Frequent items: Identify items that bought together by large number of customers
- Process the sale transaction log to find frequent items
- Classical example:
- Customers, who bought diapers, have also bought beers
- Place these items next to each other's.
- What are the subsequent purchases after buying a PC?
- What kinds of DNA are sensitive to this new drug?
- Broad applications:
- Basket data analysis, cross-marketing, catalog design, sale campaign analysis
- Web \log (click stream) analysis, DNA sequence analysis, etc.
- Why associations:
- Placement
- Advertising
- Sales
- Coupons

- Frequent Patterns

- Frequent pattern: pattern (set of items, sequence, etc.) that occurs frequently in a dataset.
- Basic Concepts:

A set of items: $\mathrm{I}=\{\mathrm{x} 1, \ldots, \mathrm{xk}\}$
Transactions: $\mathrm{D}=\{\mathrm{t} 1, \mathrm{t} 2, \ldots, \mathrm{tn}\}, \mathrm{tj} \subseteq \mathrm{I}$
A k-Itemset: $\{\mathrm{Ii} 1, \mathrm{I} 22, \ldots, \mathrm{Iik}\} \subseteq \mathrm{I}$

- Support of an itemset:
- Percentage of transactions that contain that itemset.
- Large (Frequent) itemset:
- Itemset whose number of occurrences is above a threshold.
- Basic definitions:

○ A set of items: $\mathrm{I}=\{\mathrm{x} 1, \ldots, \mathrm{xk}\}$

- Transactions: $\mathrm{D}=\left\{\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{n}}\right\}, \mathrm{t}_{\mathrm{j}} \subseteq \mathrm{I}$

○ A k-Itemset: $\left\{\mathrm{I}_{\mathrm{i} 1}, \mathrm{I}_{\mathrm{i}} 2, \ldots, \mathrm{I}_{\mathrm{ik}}\right\} \subseteq \mathrm{I}$

- Association Rule (AR):
- implication $X \Rightarrow Y$
where $\mathrm{X}, \mathrm{Y} \subseteq \mathrm{I}$ and $\mathrm{X} \cap \mathrm{Y}=\varnothing$;
- Support of itemset:
- Support of an itemset: Percentage of transactions that contain that itemset.
- AR (s) X X : Percentage of transactions that contain X $\cup Y$
- Confidence of itemset:
- AR (a) $X \Rightarrow Y$: Ratio of number of transactions that contain $X \cup Y$ to the number that contain X
- Association Rule Problem:
- Identify all association rules $\mathrm{X} \Rightarrow \mathrm{Y}$ with a minimum support and confidence.
- Large (Frequent) itemset: Itemset whose number of occurrences is above a threshold.
- Example:

Transactions	Items
T1	Break, Jelly, PeanutButter
T2	Bead, PeanutButter
T3	Bead, Mild, PeanutButter
T4	Beer, Bread
T5	Beer, Mild

$\mathrm{X} \Rightarrow \mathrm{Y}$	Support	Confidence
Bread \Rightarrow Peanutbutter	$=3 / 5 \%=60 \%$	$=(3 / 5) /(4 / 5) \%=75 \%$
Peanutbutter \Rightarrow Bread	60%	$=(3 / 5) /(3 / 5) \%=100 \%$
Jelly \Rightarrow Milk	0%	0%
Jelly \Rightarrow Peanutbutter	$=1 / 5 \%=20 \%$	$=(1 / 5) /(1 / 5) \%=100 \%$

- Association Rules techniques:
- Find all frequent itemsets.
- Generate strong association rules from the frequent itemsets:
- those rules must satisfy minimum support and minimum confidence.
- Regular algorithms such as A-priori, take \mathbf{k} passes to find frequent itemsets of size k .
- Can we use fewer passes?
- Use 2 or fewer passes for all sizes
- Random sampling
- SON (Savasere, Omiecinski, and Navathe)
- Toivonen

- Random Sampling

- Algorithm:
- Take a random sample of the market basket
- Run a-priori algorithm or any other association rule algorithm in main memory
- No disk I/O
- Reduce support threshold proportionally to match the sample size

Main Memory*
Copy of sample backet
Space for counts

- Example: if the sample size $x \%$,
- The support threshold=size of the basket/x
* Since the data is in the main memory, we can process the data as many times as we need.
- Optionally, verity that the candidate pairs are truly frequent in the data set by a second pass \rightarrow avoid false positive
- We may not find sets that are frequent in the whole, but not in the sample \rightarrow false negative
- Smaller threshold, e.g., s/20, helps find more truly frequent itemsets, but require more memory

- SON Algorithm

- It is also known as "Partition algorithm"
- It uses parallel processing and mapreduce to find frequent itemsets in a big dataset:
- Partition data and test each one of them.
- Combine extracted results
- It does parallel computing which saves time and memory
- It uses two passes:

- Pass 1: Find the candidate itemsets

- Split the data into chunks that can be processed in main memory.
- Read one chunk at the time
- In parallel, find all frequent itemsets for each chunk.
- Threshold $=s$ /number of chunks
- An itemset becomes a candidate if it is found to be frequent in any one or more chunks of the baskets.

- Pass 2: Find true frequent itemsets

- Verify that the itemsets are truly frequent in the entire data set to eliminate false positives
- Count all the candidate itemsets and determine which itemsets are frequent in the entire set.

- Mapreduce Implementation:
- Pass 1:
- First Map Function:
- Find the itemsets frequent in the subset using an association rule algorithm such as apriori using a lower threshold from s to s / p.
- The output is a set of key-value pairs (F, 1), where F is a frequent itemset from the sample. The value is always 1 and is irrelevant.
- First Reduce Function:
- First Reduce Function:
- Each Reduce task is assigned a set of keys, which are itemsets. The value 1 is ignored, and the Reduce task simply produces those keys (itemsets) that appear one or more times. Thus, the output of the first Reduce function is the candidate itemsets.
- Pass 2:
- Second Map Function:
- The Map tasks take all the output from the first Reduce Function (the candidate itemsets) and a portion of the input data file.
- Each Map task counts the number of occurrences of each of the candidate itemsets in the portion of the dataset that it was assigned.
- The output is a set of key-value pairs (C, v), where C is one of the candidate itemset and v is the support for that itemset among the baskets that were input to this Map task.
- Second Reduce Function:
- The Reduce tasks take the itemsets they are given as keys and sum the associated values.
- The result is the total support for each of the itemsets that the Reduce task was assigned to handle.
- Those itemsets whose sum of values is at least \mathbf{s} are frequent in the whole dataset, so the Reduce task outputs these itemsets with their counts.
- Ignore itemsets with lower support (< s).
- Drawback:
- We may not catch frequent itemsets in the whole dataset \rightarrow False Negative
- Smaller threshold, e.g., s $/ \mathrm{kp}$, where p is the number of chucks, helps catch more truly frequent itemsets.
\rightarrow But requires more space.

