
P a g e 1 | 8

Big Data Association Rules

• Overview ... 2

• Frequent Patterns .. 2

• Random Sampling ... 4

• SON Algorithm ... 5

P a g e 2 | 8

• Overview

o Supermarket basket analysis: What products were often purchased

together?

o Frequent items: Identify items that bought together by large number

of customers

o Process the sale transaction log to find frequent items

o Classical example:

▪ Customers, who bought diapers, have also bought beers

▪ Place these items next to each other’s.

o What are the subsequent purchases after buying a PC?

o What kinds of DNA are sensitive to this new drug?

o Broad applications:

▪ Basket data analysis, cross-marketing, catalog design, sale

campaign analysis

▪ Web log (click stream) analysis, DNA sequence analysis, etc.

o Why associations:

▪ Placement

▪ Advertising

▪ Sales

▪ Coupons

• Frequent Patterns

o Frequent pattern: pattern (set of items, sequence, etc.) that occurs

frequently in a dataset.

o Basic Concepts:

A set of items: I={x1, …, xk}

Transactions: D={t1,t2, …, tn}, tj  I

A k-Itemset: {Ii1,Ii2, …, Iik}  I

o Support of an itemset:

▪ Percentage of transactions that contain that itemset.

o Large (Frequent) itemset:

▪ Itemset whose number of occurrences is above a threshold.

P a g e 3 | 8

• Basic definitions:

o A set of items: I={x1, …, xk}

o Transactions: D={t1,t2, …, tn}, tj  I

o A k-Itemset: {Ii1,Ii2, …, Iik}  I

o Association Rule (AR):

▪ implication X  Y

where X,Y  I and X  Y = ;

o Support of itemset:

▪ Support of an itemset: Percentage of transactions that

contain that itemset.

▪ AR (s) X  Y: Percentage of transactions that contain X

Y

o Confidence of itemset:

▪ AR (a) X  Y: Ratio of number of transactions that contain

X  Y to the number that contain X

o Association Rule Problem:

o Identify all association rules X  Y with a minimum

support and confidence.

o Large (Frequent) itemset: Itemset whose number of

occurrences is above a threshold.

o Example:

Transactions Items

T1 Break, Jelly, PeanutButter

T2 Bead, PeanutButter

T3 Bead, Mild, PeanutButter

T4 Beer, Bread

T5 Beer, Mild

P a g e 4 | 8

X Y Support Confidence

Bread  Peanutbutter = 3/5 %= 60% = (3/5)/(4/5)%=75%

Peanutbutter  Bread 60% = (3/5)/(3/5)%=100%

Jelly  Milk 0% 0%

Jelly  Peanutbutter =1/5 % = 20% = (1/5)/(1/5) % = 100%

o Association Rules techniques:

▪ Find all frequent itemsets.

▪ Generate strong association rules from the frequent itemsets:

o those rules must satisfy minimum support and minimum

confidence.

▪ Regular algorithms such as A-priori, take k passes to find

frequent itemsets of size k.

▪ Can we use fewer passes?

▪ Use 2 or fewer passes for all sizes

▪ Random sampling

▪ SON (Savasere, Omiecinski, and Navathe)

▪ Toivonen

• Random Sampling

o Algorithm:

▪ Take a random sample of the market basket

▪ Run a-priori algorithm or any other association rule

algorithm in main memory

▪ No disk I/O

▪ Reduce support threshold proportionally to match

the sample size

o Example: if the sample size x%,

▪ The support threshold=size of the basket/x

Main Memory*

Copy of sample

backet

Space for

counts

* Since the data is in the main memory, we can process the data as many

times as we need.

P a g e 5 | 8

o Optionally, verity that the candidate pairs are truly frequent in the

data set by a second pass ➔ avoid false positive

o We may not find sets that are frequent in the whole, but not in the

sample ➔ false negative

o Smaller threshold, e.g., s/20, helps find more truly frequent itemsets,

but require more memory

• SON Algorithm

o It is also known as ”Partition algorithm”

o It uses parallel processing and mapreduce to find frequent itemsets in

a big dataset:

o Partition data and test each one of them.

o Combine extracted results

o It does parallel computing which saves time and memory

o It uses two passes:

▪ Pass 1: Find the candidate itemsets

• Split the data into chunks that can be processed in

main memory.

• Read one chunk at the time

• In parallel, find all frequent itemsets for each chunk.

o Threshold = s/number of chunks

o An itemset becomes a candidate if it is found

to be frequent in any one or more chunks of

the baskets.

▪ Pass 2: Find true frequent itemsets

• Verify that the itemsets are truly frequent in the

entire data set to eliminate false positives

• Count all the candidate itemsets and determine

which itemsets are frequent in the entire set.

P a g e 6 | 8

o Mapreduce Implementation:

o Pass 1:

▪ First Map Function:

• Find the itemsets frequent in the subset using an

association rule algorithm such as apriori using a

lower threshold from s to s/p.

P a g e 7 | 8

• The output is a set of key-value pairs (F, 1), where F

is a frequent itemset from the sample. The value is

always 1 and is irrelevant.

▪ First Reduce Function:

• First Reduce Function:

o Each Reduce task is assigned a set of keys,

which are itemsets. The value 1 is ignored, and

the Reduce task simply produces those keys

(itemsets) that appear one or more times.

Thus, the output of the first Reduce function is

the candidate itemsets.

o Pass 2:

▪ Second Map Function:

• The Map tasks take all the output from the first

Reduce Function (the candidate itemsets) and a

portion of the input data file.

• Each Map task counts the number of occurrences of

each of the candidate itemsets in the portion of the

dataset that it was assigned.

• The output is a set of key-value pairs (C, v), where

C is one of the candidate itemset and

v is the support for that itemset among the

baskets that were input to this Map task.

▪ Second Reduce Function:

• The Reduce tasks take the itemsets they are given as

keys and sum the associated values.

• The result is the total support for each of the

itemsets that the Reduce task was assigned to

handle.

• Those itemsets whose sum of values is at least s are

frequent in the whole dataset, so the Reduce task

outputs these itemsets with their counts.

• Ignore itemsets with lower support (< s).

P a g e 8 | 8

o Drawback:

o We may not catch frequent itemsets in the whole dataset

➔ False Negative

o Smaller threshold, e.g., s /kp, where p is the number of chucks,

helps catch more truly frequent itemsets.

➔ But requires more space.

