
P a g e  1 | 8 

 

 

Big Data Association Rules  
 

 

• Overview ................................................................................................. 2 

• Frequent Patterns .................................................................................... 2 

• Random Sampling ................................................................................... 4 

• SON Algorithm ....................................................................................... 5 

 

 

 

  

 

  

 

  



P a g e  2 | 8 

 

• Overview 

o Supermarket basket analysis: What products were often purchased 

together? 

o Frequent items: Identify items that bought together by large number 

of customers 

o Process the sale transaction log to find frequent items 

o Classical example: 

▪ Customers, who bought diapers, have also bought beers 

▪ Place these items next to each other’s. 

o What are the subsequent purchases after buying a PC? 

o What kinds of DNA are sensitive to this new drug? 

o Broad applications: 

▪ Basket data analysis, cross-marketing, catalog design, sale 

campaign analysis 

▪ Web log (click stream) analysis, DNA sequence analysis, etc. 

o Why associations: 

▪ Placement  

▪ Advertising 

▪ Sales 

▪ Coupons 

 

• Frequent Patterns 

o Frequent pattern: pattern (set of items, sequence, etc.) that occurs 

frequently in a dataset. 

o Basic Concepts: 

A set of items:  I={x1, …, xk} 

Transactions: D={t1,t2, …, tn}, tj  I 

A k-Itemset: {Ii1,Ii2, …, Iik}   I 

 

o Support of an itemset:  

▪ Percentage of transactions that contain that itemset. 

o Large (Frequent) itemset:  

▪ Itemset whose number of occurrences is above a threshold. 
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• Basic definitions: 

o A set of items:  I={x1, …, xk} 

 

o Transactions: D={t1,t2, …, tn}, tj  I 

 

o A k-Itemset: {Ii1,Ii2, …, Iik}   I 

 

o Association Rule (AR):  

▪ implication X  Y  

where X,Y  I and X  Y = ; 

o Support of itemset:  

▪ Support of an itemset: Percentage of transactions that 

contain that itemset. 

▪ AR (s) X   Y: Percentage of transactions that contain X 

Y 

o Confidence of itemset: 

▪ AR (a) X  Y: Ratio of number of transactions that contain 

X  Y to the number that contain X 

 

o Association Rule Problem: 

o Identify all association rules X  Y with a minimum 

support and confidence. 

o Large (Frequent) itemset: Itemset whose number of 

occurrences is above a threshold. 

o Example: 

 

Transactions Items 

T1 Break, Jelly, PeanutButter 

T2 Bead, PeanutButter 

T3 Bead, Mild, PeanutButter 

T4 Beer, Bread 

T5 Beer, Mild 
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X Y Support Confidence 

Bread  Peanutbutter = 3/5 %= 60% = (3/5)/(4/5)%=75% 

Peanutbutter  Bread 60% = (3/5)/(3/5)%=100% 

Jelly  Milk 0% 0% 

Jelly  Peanutbutter =1/5 % = 20% = (1/5)/(1/5) % = 100% 

 

o Association Rules techniques: 

▪ Find all frequent itemsets. 

▪ Generate strong association rules from the frequent itemsets:  

o those rules must satisfy minimum support and minimum 

confidence. 

▪ Regular algorithms such as A-priori, take k passes to find 

frequent itemsets of size k. 

▪ Can we use fewer passes? 

▪ Use 2 or fewer passes for all sizes  

▪ Random sampling 

▪ SON (Savasere, Omiecinski, and Navathe) 

▪ Toivonen 

 

 

• Random Sampling 

o Algorithm: 

▪ Take a random sample of the market basket 

▪ Run a-priori algorithm or any other association rule 

algorithm in main memory 

▪ No disk I/O 

▪ Reduce support threshold proportionally to match 

the sample size 

o Example: if the sample size x%,  

▪ The support threshold=size of the basket/x 

 

 

 

Main Memory* 

Copy of sample 

backet 

Space for 

counts 

* Since the data is in the main memory, we can process the data as many 

times as we need. 
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o Optionally, verity that the candidate pairs are truly frequent in the 

data set by a second pass ➔ avoid false positive 

o We may not find sets that are frequent in the whole, but not in the 

sample ➔ false negative 

o Smaller threshold, e.g., s/20,  helps find more truly frequent itemsets, 

but require more memory 

 

• SON Algorithm 

o It is also known as ”Partition algorithm” 

o It uses parallel processing and mapreduce to find frequent itemsets in 

a big dataset: 

o Partition data and test each one of them. 

o Combine extracted results 

o It does parallel computing which saves time and memory 

o It uses two passes: 

▪ Pass 1: Find the candidate itemsets 

• Split the data into chunks that can be processed in 

main memory. 

• Read one chunk at the time  

• In parallel, find all frequent itemsets for each chunk. 

o Threshold = s/number of chunks 

o An itemset becomes a candidate if it is found 

to be frequent in any one or more chunks of 

the baskets. 

▪ Pass 2: Find true frequent itemsets 

• Verify that the itemsets are truly frequent in the 

entire data set to eliminate false positives 

• Count all the candidate itemsets and determine 

which itemsets are frequent in the entire set. 
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o Mapreduce Implementation: 

o Pass 1: 

▪ First Map Function:  

• Find the itemsets frequent in the subset using an 

association rule algorithm such as apriori using a 

lower threshold from s to s/p.  
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• The output is a set of key-value pairs (F, 1), where F 

is a frequent itemset from the sample. The value is 

always 1 and is irrelevant. 

▪ First Reduce Function: 

• First Reduce Function:  

o Each Reduce task is assigned a set of keys, 

which are itemsets. The value 1 is ignored, and 

the Reduce task simply produces those keys 

(itemsets) that appear one or more times. 

Thus, the output of the first Reduce function is 

the candidate itemsets. 

o Pass 2: 

▪ Second Map Function: 

• The Map tasks take all the output from the first 

Reduce Function (the candidate itemsets) and a 

portion of the input data file.  

• Each Map task counts the number of occurrences of 

each of the candidate itemsets in the portion of the 

dataset that it was assigned.  

• The output is a set of key-value pairs (C, v), where  

C is one of the candidate itemset and  

v is the support for that itemset among the 

baskets that were input to this Map task. 

▪ Second Reduce Function: 

• The Reduce tasks take the itemsets they are given as 

keys and sum the associated values.  

• The result is the total support for each of the 

itemsets that the Reduce task was assigned to 

handle.  

• Those itemsets whose sum of values is at least s are 

frequent in the whole dataset, so the Reduce task 

outputs these itemsets with their counts.  

• Ignore itemsets with lower support (< s). 
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o Drawback: 

o We may not catch frequent itemsets in the whole dataset  

➔ False Negative 

o Smaller threshold, e.g., s /kp, where p is the number of chucks, 

helps catch more truly frequent itemsets. 

➔ But requires more space. 

 

 


