Big Data Association Rules

•	Overview	. 2
•	Frequent Patterns	.2
•	Random Sampling	.4
•	SON Algorithm	. 5

• Overview

- Supermarket basket analysis: What products were often purchased together?
- Frequent items: Identify items that bought together by large number of customers
- Process the sale transaction log to find frequent items
- Classical example:
 - Customers, who bought diapers, have also bought beers
 - Place these items next to each other's.
- What are the subsequent purchases after buying a PC?
- What kinds of DNA are sensitive to this new drug?
- Broad applications:
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis
 - Web log (click stream) analysis, DNA sequence analysis, etc.
- Why associations:
 - Placement
 - Advertising
 - Sales
 - Coupons

• Frequent Patterns

- Frequent pattern: pattern (set of items, sequence, etc.) that occurs frequently in a dataset.
- Basic Concepts:
 - A set of items: $I=\{x1, ..., xk\}$ Transactions: $D=\{t1,t2, ..., tn\}, tj \subseteq I$ A k-Itemset: $\{Ii1,Ii2, ..., Iik\} \subset I$
- Support of an itemset:
 - Percentage of transactions that contain that itemset.
- Large (Frequent) itemset:
 - Itemset whose number of occurrences is above a threshold.

- Basic definitions:
 - A set of items: $I=\{x_1, ..., x_k\}$
 - Transactions: $D = \{t_1, t_2, ..., t_n\}, t_j \subseteq I$
 - A k-Itemset: $\{I_{i1}, I_{i2}, ..., I_{ik}\} \subseteq I$
 - Association Rule (AR):
 - implication $X \Rightarrow Y$ where $X, Y \subseteq I$ and $X \cap Y = \emptyset$;
 - **Support** of itemset:
 - Support of an itemset: Percentage of transactions that contain that itemset.
 - AR (s) X ⇒ Y: Percentage of transactions that contain X ∪Y
 - **Confidence** of itemset:
 - AR (a) X ⇒ Y: Ratio of number of transactions that contain X ∪ Y to the number that contain X

• Association Rule Problem:

- Identify all association rules $X \Rightarrow Y$ with a **minimum** support and confidence.
- Large (Frequent) itemset: Itemset whose number of occurrences is above a threshold.
- Example:

Transactions	Items
T1	Break, Jelly, PeanutButter
T2	Bead, PeanutButter
T3	Bead, Mild, PeanutButter
T4	Beer, Bread
T5	Beer, Mild

$X \Rightarrow Y$	Support	Confidence
Bread \Rightarrow Peanutbutter	= 3/5 % = 60%	= (3/5)/(4/5)%=75%
Peanutbutter \Rightarrow Bread	60%	= (3/5)/(3/5)%=100%
$Jelly \Rightarrow Milk$	0%	0%
Jelly \Rightarrow Peanutbutter	=1/5 % = 20%	=(1/5)/(1/5) % $=100%$

- Association Rules techniques:
 - Find all frequent itemsets.
 - Generate strong association rules from the frequent itemsets:
 - those rules must satisfy minimum support and minimum confidence.
 - Regular algorithms such as A-priori, take k passes to find frequent itemsets of size k.
 - Can we use fewer passes?
 - Use 2 or fewer passes for all sizes
 - Random sampling
 - SON (Savasere, Omiecinski, and Navathe)
 - Toivonen

• Random Sampling

- Algorithm:
 - Take a random sample of the market basket
 - Run a-priori algorithm or any other association rule algorithm in main memory
 - No disk I/O
 - Reduce support threshold proportionally to match the sample size
- Example: if the sample size x%,
 - The support threshold=size of the basket/x

* Since the data is in the main memory, we can process the data as many times as we need.

Main Memory*

Copy of sample backet

Space for counts

- Optionally, verity that the candidate pairs are truly frequent in the data set by a second pass → avoid false positive
- We may not find sets that are frequent in the whole, but not in the sample → false negative
- Smaller threshold, e.g., s/20, helps find more truly frequent itemsets, but require more memory

• SON Algorithm

- o It is also known as "Partition algorithm"
- It uses parallel processing and mapreduce to find frequent itemsets in a big dataset:
 - Partition data and test each one of them.
 - Combine extracted results
 - It does parallel computing which saves time and memory
- It uses two passes:
 - Pass 1: Find the candidate itemsets
 - Split the data into chunks that can be processed in main memory.
 - Read one chunk at the time
 - In parallel, find all frequent itemsets for each chunk.
 - Threshold = s/number of chunks
 - An itemset becomes a candidate if it is found to be frequent in any one or more chunks of the baskets.
 - Pass 2: Find true frequent itemsets
 - Verify that the itemsets are truly frequent in the entire data set to eliminate **false positives**
 - Count all the candidate itemsets and determine which itemsets are frequent in the entire set.

- Mapreduce Implementation:
 - Pass 1:
 - First Map Function:
 - Find the itemsets frequent in the subset using an association rule algorithm such as apriori using a lower threshold from s to s/p.

- The output is a set of key-value pairs (F, 1), where F is a frequent itemset from the sample. The value is always 1 and is irrelevant.
- First Reduce Function:
 - First Reduce Function:
 - Each Reduce task is assigned a set of keys, which are itemsets. The value 1 is ignored, and the Reduce task simply produces those keys (itemsets) that appear one or more times. Thus, the output of the first Reduce function is the candidate itemsets.
- Pass 2:
 - Second Map Function:
 - The Map tasks take <u>all the output from the first</u> <u>Reduce Function</u> (the candidate itemsets) and a <u>portion of the input data file</u>.
 - Each Map task counts the number of occurrences of each of the candidate itemsets in the portion of the dataset that it was assigned.
 - The output is a set of key-value pairs (C, v), where C is one of the candidate itemset and v is the support for that itemset among the baskets that were input to this Map task.
 - Second Reduce Function:
 - The Reduce tasks take the itemsets they are given as keys and **sum the associated values**.
 - The result is the total support for each of the itemsets that the Reduce task was assigned to handle.
 - Those itemsets whose sum of values is **at least s** are frequent in the whole dataset, so the Reduce task outputs these itemsets with their counts.
 - Ignore itemsets with lower support (< s).

• Drawback:

- We may not catch frequent itemsets in the whole dataset
 → False Negative
- Smaller threshold, e.g., s /kp, where p is the number of chucks, helps catch more truly frequent itemsets.

 \rightarrow But requires more space.